Department of Electrical and Computer Engineering
New Jersey Institute of Technology

ECE 453: Introduction to Discrete Event Systems (3 credits, 3 contact hours, elective course)

Instructor: MengChu Zhou, email: zhou@njit.edu Tel. (973) 596-6282
Web page: http://web.njit.edu/~zhou

Course Description:
This course introduces fundamentals of discrete event systems: logical models, timed models, stochastic timed models, graphical representations, Markov chains, and discrete-event simulation. The primary mathematical and graphical model is Petri nets. It presents their applications in modeling, control, analysis, validation, simulation, and performance evaluation of various discrete event systems.

Prerequisite: ECE 251 or CIS251, MATH333 or ECE 321
Co-requisite: none

Course Learning Outcomes:
1. Able to build various models given system specifications, including logical models, timed models, stochastic timed models, and Markov chains.
2. Able to design sequential control systems by using logical models such as finite state machine and Petri nets.
3. Able to perform modeling, control, analysis, validation, simulation, and performance evaluation of various discrete event systems.
4. Able to write and present research reports documenting the results of their term projects.

Relevant Student Outcomes:
(a) an ability to apply knowledge of mathematics, science, and engineering; (CLO 1, 2, 3)
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability; (CLO 1, 2, 3)
(e) an ability to identify, formulate, and solve engineering problems; (CLO 1, 2, 3)
(g) an ability to communicate effectively; (CLO 4)
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice; (CLO 1, 2, 3)

Computer assisted design and course specific software:
MatLab
Petri Net Simulator

This course outline serves to provide a big picture of the course. Instructional materials such as textbooks, individual topics, and grading policy are subject to revision and changes by individual instructors.
Outline:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete event systems</td>
<td>1</td>
</tr>
<tr>
<td>State machines and math</td>
<td>2-3</td>
</tr>
<tr>
<td>Hardware implementation</td>
<td>4</td>
</tr>
<tr>
<td>Petri nets and properties</td>
<td>5-6</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>7</td>
</tr>
<tr>
<td>Petri net invariant analysis</td>
<td>8</td>
</tr>
<tr>
<td>Petri net reduction</td>
<td>9</td>
</tr>
<tr>
<td>Deterministic time Petri nets</td>
<td>10</td>
</tr>
<tr>
<td>Markov chains</td>
<td>11-12</td>
</tr>
<tr>
<td>Stochastic Petri nets</td>
<td>13</td>
</tr>
<tr>
<td>Project presentation</td>
<td>14</td>
</tr>
</tbody>
</table>

Grading policy: Midterm @ 40%; Final exam or term project @ 30%; 4 homeworks and class participation @ 30% total. Homework will be posted to the class’s email list at least one week prior to their due dates. No points will be given to your homework submission if it passes its submission deadline.

Updates and Assignments to be distributed via e-mail

Office hours, recitations and group studies: 5-6pm on the day this course offers or by appointment

Honor Code: The NJIT Honor Code will be upheld; any violations will be brought to the immediate attention of the Dean of Students.

Office: ECE Bldg., Room 335

Prepared by: M. Zhou