ECE 368 Signal Transmission (2 credits, 2 contact hours, required course)

Instructor: Edip Niver; email: niver@njit.edu; Tel.: 973-596-3542

 SBN 0-07-053953-7 (main text)
 A.F. Peterson and G.D. Durgin, Transient signals on Transmission lines, Morgan
 & Claypool, 2009 ISSN 1932-1252

Course Description:
To introduce computer engineering students to fundamental principles of transmission lines in time
domain with applications to digital systems, interconnects between line drivers and line receivers and
crosstalk in coupled lines. Topics include the telegrapher’s equations, wave propagation, lattice diagrams,
transients in digital systems, crosstalk, proper termination for high speed logic.

Prerequisite: CoE students - ECE 232 and ECE 251 Corequisite: none

Specific course learning outcomes (CLO): The student will be able to

1. understand transmission lines and when they are used as interconnects; understand and minimize
 propagation delay; provide examples;
2. understand and utilize the basic solutions of transmission lines to transient phenomena in a
 resistive and reactive loads based on lattice diagrams;
3. utilize graphical solutions due to non-linear source and load terminations of transmission lines;
4. utilize solutions to include crosstalk for multiple coupled transmission lines;
5. utilize solutions to high speed ECL logic and other logic families in the presence of transmission
 lines.

Relevant student outcomes (ABET criterion 3):

1. an ability to identify, formulate, and solve complex engineering problems by applying
 principles of engineering, science, and mathematics (CLO 1-5)
2. an ability to apply engineering design to produce solutions that meet specified needs with
 consideration of public health, safety, and welfare, as well as global, cultural, social,
 environmental, and economic factors (CLO 1, 5)
3. an ability to communicate effectively with a range of audiences (CLO 1)
4. an ability to function effectively on a team whose members together provide leadership,
 create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
 (CLO 4)
5. an ability to develop and conduct appropriate experimentation, analyze and interpret data,
 and use engineering judgment to draw conclusions (CLO 2-5)
6. an ability to acquire and apply new knowledge as needed, using appropriate learning
 strategies (CLO 1-5).

Computer assisted design and course specific software:
PSpice, APPCAD

This course outline serves to provide a big picture of the course. Instructional materials such as textbooks,
individual topics, and grading policy are subject to revision and changes by individual instructors.
<table>
<thead>
<tr>
<th>Tentative Course Schedule</th>
<th>Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission Line Fundamentals</td>
<td>1</td>
</tr>
<tr>
<td>Reflections on Transmission Lines</td>
<td>2-3</td>
</tr>
<tr>
<td>Review and examination 1</td>
<td>4</td>
</tr>
<tr>
<td>Review of Laplace Transform</td>
<td>5</td>
</tr>
<tr>
<td>Transients on Transmission Lines, PSPICE demonstration</td>
<td>6-7</td>
</tr>
<tr>
<td>Nonlinear sources and terminations, Bergeron plots</td>
<td>8</td>
</tr>
<tr>
<td>Review and examination 2</td>
<td>9-10</td>
</tr>
<tr>
<td>Crosstalk on transmission lines</td>
<td>11</td>
</tr>
<tr>
<td>Interconnecting high speed ECL</td>
<td>12</td>
</tr>
<tr>
<td>Review and examination 3</td>
<td>13-14</td>
</tr>
</tbody>
</table>

Grading policy: Homework, quizzes class, participation: 5%
Three examinations: 20%, 20%, 20%
Final examination: 35%

Homeworks and projects
PSpice - based simulations of various transmission line problems

Updates and Assignments to be distributed via e-mail

Office hours, recitations and group studies: By appointment

Honor Code: The NJIT Honor Code will be upheld; any violations will be brought to the immediate attention of the Dean of Students.

Office: MIC Bldg., Room 406

Prepared by: E. Niver

This course outline serves to provide a big picture of the course. Instructional materials such as textbooks, individual topics, and grading policy are subject to revision and changes by individual instructors.