Course Instructor: Oksana Manzhura
email: oksana.manzhura@njit.edu; office: 205 ECEC, tel.: 973 596-3504

Course Number and Title:
ECE 232_102, HM4: Circuits and Systems II (3 credits, 3 contact hours, required course)

Text book:

Course Catalog Description (including prerequisites and co-requisites):
A continuation of circuits and systems with special emphasis on transient response. Topics include Laplace transform analysis, transfer functions, convolution, Bode diagrams, and Fourier series.

Prerequisites: ECE 231. Co-requisite: Math 222.

Specific course learning outcomes (CLO):
The student will be able to
1. Solve for transient responses of first order resonant circuit with single or sequential switching.
2. Solve for transient responses of a second order resonant circuit.
3. Determine Laplace Transform of an arbitrary signal including delays.
4. Demonstrate the ability to perform Inverse Laplace Transform of a rational function (including non-proper and function with exponential factors).
5. Calculate a response of a circuit to an arbitrary signal using Laplace transform.
6. Develop a firm understanding of a concept of frequency response. Determine frequency response of a linear system, use Bode diagrams.
7. Determine the transfer function for a circuit and understand it's properties (poles and zeros, memory and weighting function concept)
8. Use transfer function to find impulse, step and steady state sinusoidal response of a linear system.
9. Use convolution to find response of a linear system to an arbitrary time varying excitation composed of studied time signals.
10. Design a passive/active high, low, band pass, and band reject filter.
11. Find a Fourier series representation of a periodic wave form.
12. Perform power calculation for a circuit with periodic function.
13. Calculate a steady state response of a linear system to an arbitrary periodic wave.
14. Use National Instruments’ Multisim circuit modeling and analysis application model.
15. Use Digilent Analog Discovery Portable Circuit Design Kit (aka Portable Lab) to perform simple analog circuit experiments.

Relevant Student Outcomes (ABET criterion 3):
1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics (CLO 1-17)
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors (CLO 2, 3, 13-17)
3. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives (CLO 16,17)
4. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions (CLO 7,12,13,16,17)
5. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.(CLO1-15)
<table>
<thead>
<tr>
<th>Week</th>
<th>Chapter/Sections</th>
<th>Topics</th>
<th>Problems*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>PRE-TEST</td>
<td>HW1 Complex Numbers Homework.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-Test Common mistakes correction. Mathematical expression of signals, power levels and dB, half power point, Gain and Attenuation.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ch 8.1&8.</td>
<td>Second Order Systems, Series and Parallel Natural Response. Series and Parallel Step Response. General Solution with Abrupt Power Change. Home Lab Assignment #1 (Materials distributed during previous week)</td>
<td>HW5 8.1, 8.4, 8.5, 8.6, 8.7, 8.11, 8.14, 8.17 H, 8.27, 8.30, 8.35, 8.38, 8.41, 8.42, 8.44, 8.45, 8.46, 8.53, 8.54, 8.57 H</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>QUIZ I</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>QUIZ II</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ch. 13.4-13.5</td>
<td>Transfer Functions</td>
<td>HW9 13.48, 13.49, 13.51, 13.52, 13.56, 13.57(plot)</td>
</tr>
<tr>
<td>11</td>
<td>Ch. 13.6-13.7</td>
<td>Convolution. Steady State Sinusoidal Response.</td>
<td>HW10 13.59, 13.60, 13.61, 13.63, 13.64, 13.65, 13.66, 13.67, 13.69, 13.73, 13.74</td>
</tr>
<tr>
<td>Ch. 16.1-16.4</td>
<td>Fourier Series, Symmetries, Complex Form</td>
<td>16.1, 16.2, 16.12, 16.13, 16.15, 16.28, 16.30, 16.34</td>
<td></td>
</tr>
<tr>
<td>Ch. 16.5</td>
<td>Application of Fourier Series to Linear System Analysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grading Policy:
- Homework, class participation: 4%
- Three class examinations: 20%, 20%, 20%.
- Final examination: 35%
- **Take-Home Laboratory assignments:** 5% +5%extra (all reports and simulations required)
- Optional Multisim Project 5% extra

*15% of problems (marked with an asterisk) should be solved using MultiSim (available in Computer Labs and for purchase as Student License). Getting started link: http://www.ni.com/white-paper/10710/en

Honors class fulfills 15% more work in form of homework (extra problems marked with H), test problems and projects. Project is mandatory for the Honors section. Project is due week 14.

Tests and final exams: are closed notes and books, formula sheets allowed for test 1(one page), test 2 (two pages), test 3 and final (three pages). No solved numerical examples allowed. Phones are NOT ALLOWED ON THE TABLES DURING TESTS. **Failure to adhere to these rules forfeits the test grade.**

Attendance: required at class lectures. **Cellular phones and Beepers:** Shut off or in quiet mode.

NJIT Honor Code will be upheld, and any violations will be brought to the immediate attention of the Dean of Students.