ECE 461: Microwave & Integrated Optics (3 credits, 3 contact hours)

Instructor: Gerald Whitman; email: whitman@njit.edu; Tel.: 973-596-3232

Text books:

Reference Texts:

Course Description:
This course introduces students to basic principles and techniques of microwave engineering which includes transmission line theory, scattering theory, matching techniques, passive components and fundamentals of amplifier design.

Prerequisite: ECE 361, ECE 362 Co-requisite: none

Specific course learning outcomes (CLO): The student will be able to

1. gain an appreciation of the microwave engineering field.
2. solve Maxwell’s equations in uniform waveguides to determine the mode structure in uniform waveguides and to model uniform waveguides using transmission line equations. Specific application will be to find the cutoff frequency of TE and TM modes in rectangular waveguides.
3. use frequency domain transmission line theory and the Smith Chart to solve waveguide problems.
4. use scattering parameters to analyze and predict the behavior of linear microwave passive and active networks.
5. implement matching techniques for microwave components and devices using ell networks, quarter wave transformers and single stub tuning networks using microstrip waveguides.
6. analyze using scattering parameters a number of passive microwave components such as directional couplers and power dividers.
7. design power amplifiers using scattering parameters.
8.

Relevant student outcomes (ABET criterion 3):

(a) an ability to apply knowledge of mathematics, science, and engineering (CLO 2, 3, 4)
(b) an ability to design and conduct experiments, as well as to analyze and interpret data (CLO 4, 5, 6, 7)
(i) a recognition of the need for, and an ability to engage in life-long learning (CLO 4, 6, 7)
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice (CLO 4)
Computer assisted design and course specific software: None

<table>
<thead>
<tr>
<th>Tentative Course Schedule</th>
<th>Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to microwave engineering</td>
<td>1</td>
</tr>
<tr>
<td>Transmission Line Theory</td>
<td>2</td>
</tr>
<tr>
<td>Uniform waveguides and TE, TM and TEM Modes</td>
<td>3-4</td>
</tr>
<tr>
<td>Scattering Parameters</td>
<td>5</td>
</tr>
<tr>
<td>The Smith Chart Impedance</td>
<td>6</td>
</tr>
<tr>
<td>Impedance Matching</td>
<td>7</td>
</tr>
<tr>
<td>Review and Examination I</td>
<td>8</td>
</tr>
<tr>
<td>Passive Microwave Components</td>
<td>9-10</td>
</tr>
<tr>
<td>Microwave Transistor Amplifier Design</td>
<td>11-13</td>
</tr>
<tr>
<td>Noise Figure Circles</td>
<td>14</td>
</tr>
<tr>
<td>Final</td>
<td>15</td>
</tr>
</tbody>
</table>

Formula Sheets: Two for exam I, four for exam II, six for final.
Rules: In own handwriting, no derivations, no worked out examples, no calculations, no illustrative examples.
Permitted: Definitions, units, formulas, geometry that define parameters in formulas; equivalent circuits.

Homework Policy: The problems will be assigned and checked. Students are expected to solve all assigned problems. Solutions will be provided and discussed in class. The text contains numerous examples. Students are required to study these examples for practice.

Attendance: Required at class lectures and problem solving sessions.
Lateness to class: Unacceptable.
Cellular phones and Beepers: Shut off or in quiet mode.

Updates and Assignments to be distributed via e-mail.

Office Hours: to be announced as well as by appointment.

Grading policy: Two class examinations: 30%, 30%; Final examination: 40%. Homework, quizzes class, participation: 0-10% (add or subtract);

Honor Code: The NJIT Honor Code will be upheld; any violations will be brought to the immediate attention of the Dean of Students.

Office: MIC Bldg., Room 405
Prepared by: G. Whitman