Department of Electrical and Computer Engineering New Jersey Institute of Technology

Fall 2014

ECE 425 – Wireless Communication Systems (3 credits, 3 contact hours, elective course)

Instructor: Ali Abdi, Email: ali.abdi@njit.edu, Tel: 973-596-5621

Textbooks: P. M. Shankar, Introduction to Wireless Systems. ISBN: 0471321672 (main text)

T. S. Rappaport, Wireless Communications. ISBN: 0130422320

K. Pahlavan & A. H. Levesque, Wireless Information Networks. ISBN: 0471725420

Course Description:

This is a course on the fundamental of wireless communication systems and techniques. Topics include wireless systems and standards, the cellular concept, wireless propagation, co-channel interference, digital modulation over fading channels, antenna diversity, spread spectrum techniques, TDMA and CDMA cellular architectures, handoff, 3G and 4G systems. The course provides a general background for advanced courses on wireless communication systems and networks.

Prerequisites: ECE481 or ECE421.

Specific course learning outcomes (CLOs): The students will be able to:

- Understand wireless propagation, cellular concept, modeling and mitigating interference, system capacity and traffic, basic digital modulation in wireless channels, spread spectrum and multiple access methods; for the purpose of working in wireless communication industry or taking more advanced courses in related areas.
- 2. Understand the concepts of wireless communication systems and standards, and the fundamentals of different wireless networks such as GSM, CDMA, LTE, etc.
- 3. Design and conduct computer simulations on basic and real-world wireless communication systems and standards (such as Bluetooth).

Relevant student outcomes (ABET criterion 3):

- (a) an ability to apply knowledge of mathematics, science, and engineering (CLO 1, 3)
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data (CLO 1, 3)
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability (CLO 1, 2, 3)
- (f) an understanding of professional and ethical responsibility (CLO 2)
- (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context (CLO 2)
- (i) a recognition of the need for, and an ability to engage in life-long learning (CLO 1, 2)
- (j) a knowledge of contemporary issues (CLO 1, 2)
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice (CLO 1, 3).

Computer assisted design and course specific software: Matlab, Simulink, Matlab Communication System Toolbox

Tentative Course Schedule		Weeks
Overview of Wireless Systems	Chapter 1: pp. 1-7	1
Propagation Characteristics of Wireless Channels	Chapter 2, pp. 10-	2
(attenuation, also known as pathloss)	24	
Propagation Characteristics of Wireless Channels	Chapter 2: pp. 24-	3-4
(multipath fading, frequency and time selective	39, pp. 42-43, pp.	
channels, delay and Doppler spreads, level crossing and	51-52	
fade duration, lognormal shadowing)		
Introduction to Matlab and Simulation of Wireless	handouts	5
Channels		
Cells and Cellular Traffic (geometry of hexagonal cells,	Chapter 4: pp. 138-	6
co-channel interference)	146	
Cells and Cellular Traffic (co-channel interference	Chapter 4: pp. 146-	7
reduction techniques, coverage area estimation)	156	
Cells and Cellular Traffic (traffic capacity and	Chapter 4: pp. 156-	8
trunking, trunking efficiency)	162	
Digital Communication in Wireless Systems, using	Handouts	9
Matlab/Simulink Communication Blockset and		
Toolbox		
Multiple Access Techniques (FDMA, TDMA, CDMA,	Chapter 6: pp. 207-	10
direct sequence and frequency hopping spread	214, pp. 216-224	
spectrum techniques)		
Multiple Access Techniques (overview of wireless	Chapter 6: pp. 224-	11
systems and standards, North American digital cellular	235	
systems based on CDMA, comparison of multiple-		
access systems in wireless communications)		
More on Simulating Wireless Systems using	Handouts	12
Matlab/Simulink Communication System Toolbox		
Fading Mitigation in Wireless Systems (different forms	Chapter 5 and	13
of diversity, equalization, MIMO in LTE technology)	handouts	
Wireless LAN, MAN and PAN Technologies,	Handouts	14
Miscellaneous Materials		

Grading policy: Exams (60%), Homeworks and Projects (40%)

Homeworks and projects: They are due at the beginning of the class on the due date. Late submissions are not acceptable. Please put a cover page on your homework or project, with your name on it. All the pages should be stapled. Please write legibly. For computer projects, please provide a printout of your program and the outcome of the program.

Updates and assignments: see class website: http://web.njit.edu/~abdi/ECE425/download

Office hours: Tuesday (5 - 6 pm), Wed. (5 - 6 pm), and by appointment

Honor Code: The NJIT Honor Code will be upheld. Any violations will be brought to the immediate attention of the Dean of Students.

Office: ECE Bldg., Room 303

Prepared by: A. Abdi