Instructor: Professor S.G. Ziavras, ziavras@njit.edu, (973) 596-3462.
Office hours: By appointment (Graduate Studies Office, Fenster 140).
Description: This course deals with the design and performance evaluation of advanced/high-performance computer systems. The emphasis is on microprocessors, chip-multiprocessors and memory hierarchy design. Historical information is presented as well along with data storage and low-power dissipation schemes. Special attention is paid to pipelining, ILP (instruction-level parallelism), DLP (data-level parallelism) and TLP (thread-level parallelism) using hardware and/or software techniques to yield high performance.
Prerequisites: Undergraduate degree in Computer Engineering, or ECE 684 or equivalent.
Lecture notes and other references: http://web.njit.edu/~ziavras/classes.htm

Learning outcomes:
- Understand the inner workings and performance capabilities of advanced microprocessors.
- An ability to evaluate hardware accelerators targeting at applications with substantial data-level parallelism (DLP).
- Learn software-driven techniques to match application requirements to available pipelined hardware in order to obtain high performance.
- An ability to estimate the static and dynamic power dissipation of given hardware modules.
- An ability to design microprocessor-based systems by accounting for performance and power dissipation.
- An ability to anticipate hardware performance improvements based on established rules from past experiences with computer technology.
- Improve report-writing skills when presenting results for computer design and evaluation.
- Learn the differences among multiscalar, superpipelined, multithreaded, simultaneous multithreaded, vector, and multicore processors.
- Understand the forces behind the computer industry’s shift to multicore processors.
- Understand cache coherence issues.
- An ability to design advanced memory hierarchies.
- Understand the basic differences between shared-memory and message-passing interprocessor connection networks.
- An ability to select appropriate computer systems for given application domains.
- Understand what hardware and software problems will require solutions for future generations of multicore processors targeting at thread-level parallelism (TLP) and heterogeneous systems.
COURSE OUTLINE

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Chapter</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>Chapter 1: Fundamentals of Quantitative Design and Analysis</td>
<td>1.1-1.9</td>
</tr>
<tr>
<td></td>
<td>Appendix A: Instruction Set Principles</td>
<td>A.1-A.10</td>
</tr>
<tr>
<td>4-5</td>
<td>Appendix C: Pipelining: Basic and Intermediate Concepts</td>
<td>C.1-C.5</td>
</tr>
<tr>
<td>6-7</td>
<td>Appendix B: Review of Memory Hierarchy</td>
<td>B.1-B.3</td>
</tr>
<tr>
<td></td>
<td>Chapter 2: Memory Hierarchy Design</td>
<td>Section 2.1</td>
</tr>
<tr>
<td>8</td>
<td>MIDTERM EXAM</td>
<td></td>
</tr>
<tr>
<td>9-10</td>
<td>Chapter 3: Instruction-Level Parallelism and Its Exploitation</td>
<td>3.1-3.12</td>
</tr>
<tr>
<td>11-12</td>
<td>Chapter 5: Thread-Level Parallelism</td>
<td>5.1-5.6</td>
</tr>
<tr>
<td>13-14</td>
<td>Chapter 4: Data-Level Parallelism in Vector, SIMD, and GPU Architectures</td>
<td>4.1-4.4</td>
</tr>
</tbody>
</table>

Week 14: Project report due

Grading Policy:

- **Midterm exam:** 35% (2 hours, open book, open notes)
- **Final exam:** 35% (2 hours, open book, open notes)
- **Project:** 30% (report due in week 14)

The NJIT Honor Code will be upheld. Any violations will be brought to the immediate attention of the Dean of Students. Please, access http://www.njit.edu/academics/pdf/academic-integrity-code.pdf for NJIT’s academic integrity code.