Course number

ECE666

Course name

Control Systems II

Prerequisite

ECE660

Course description

1. Introduction
 Classifications of nonlinear control problems
 Observer-based design: extended separation principle.
 Examples.
2. Trajectories of Second Order Systems
 Linear Systems: Nodes, foci, saddle points, centers.
 Nonlinear: Limit cycles
 Higher order systems; chaotic behavior
3. Lyapunov's Theory of Stability
 Definitions of stability and asymptotic stability.
 Local stability: Lyapunov's First Method
 Large-scale (global) stability: Lyapunov's Second Method
 Basic theorems of Lyapunov's Second Method
 Some applications in control systems
4. Full-state feedback algorithms for unbounded control
 Linearization about reference state.
 Extended linearization: state-dependent Riccati equation (SDRE) method.
 Feedback linearization
 Other methods
5. Full-state feedback algorithms for bounded control.
 Introduction: sets of reachable points for unstable plants.
 Optimal control (time optimal and related)
 Linear and nonlinear switching control
 Pulse width and pulse frequency control.
6. Observers
 Extended Kalman Filter
 Extended linearization filter
 Discrete-time observers.
 Observers with all kinds of data.
Parameter estimation and related observers

- Course learning outcomes
 - Student will be proficient in designing feedback control algorithms for nonlinear dynamic processes.
 - Student will be proficient in use of Matlab’s Control System Toolbox and Symbolic Toolbox
 - Student will be proficient in use of Matlab /Simulink to simulate closed-loop control systems

- Textbook and/or other resources
 - Matlab

- Course calendar
 - Lectures: Weekly, September 12 – December 7
 - Final Exam: December 14
 - Project due: December 14

- Grading Schema
 - Final Exam: 40%
 - Homework: 40%
 - Project: 20%

- Academic Integrity policy
 - University policy will be observed.