NJIT ECE690: COMPUTER SYSTEMS ARCHITECTURE COURSE SYLLABUS Spring 2020

Instructor: Dr. Qing Gary Liu, <u>qliu@njit.edu.</u>

Office Hours: Thursday, 10:00AM-12:00PM (through Webex) by appointment via Email.

TA: Zhenbo Qiao, zq38@njit.edu

Description: This course deals with the design and performance evaluation of advanced/highperformance computer systems. The emphasis is on microprocessors, chip-multiprocessors and memory hierarchy design. Historical information is presented as well along with data storage and low-power dissipation schemes. Special attention is paid to pipelining, ILP (instruction-level parallelism), DLP (data-level parallelism) and TLP (thread-level parallelism) using hardware and/or software techniques to yield high performance.

Prerequisites: Undergraduate degree in Computer Engineering, or ECE 684 or equivalent.

Required Background:

- Microprocessor architecture (CPU registers, ALU, control unit, internal bus)
- Assembly language programming
- Microprocessor pipelining
- Computer systems design
- Memory hierarchy design
- Virtual memory design

Textbook (required): *Computer Architecture: A Quantitative Approach*, by John L. Hennessy and David A. Patterson, Morgan Kaufmann, 5th edition, 2011, ISBN: 9780123838728.

Learning Outcomes:

- Understand the inner workings and performance capabilities of advanced microprocessors.
- An ability to evaluate hardware accelerators targeting at applications with substantial data-level parallelism (DLP).
- Learn software-driven techniques to match application requirements to available pipelined hardware in order to obtain high performance.
- An ability to estimate the static and dynamic power dissipation of given hardware modules.
- An ability to design microprocessor-based systems by accounting for performance and power dissipation.
- An ability to anticipate hardware performance improvements based on established rules from past experiences with computer technology.
- Improve report-writing skills when presenting results for computer design and evaluation.
- Learn the differences among multiscalar, superpipelined, multithreaded, simultaneous multithreaded, vector, and multicore processors.
- Understand the forces behind the computer industry's shift to multicore processors.
- Understand cache coherence issues.
- An ability to design advanced memory hierarchies.

- Understand the basic differences between shared-memory and message-passing interprocessor connection networks.
- An ability to select appropriate computer systems for given application domains.
- Understand what hardware and software problems will require solutions for future generations of multicore processors targeting at thread-level parallelism (TLP) and heterogeneous systems.

Weeks		Chapter
1-3	Chapter 1:	Fundamentals of Quantitative Design and Analysis
		(Sections 1.1-1.9)
	Appendix A:	Instruction Set Principles (Sections A.1-A.10)
4-5	Appendix C:	Pipelining: Basic and Intermediate Concepts
		(Sections C.1-C.5)
6-7	Appendix B:	Review of Memory Hierarchy (Sections B.1-B.3)
	Chapter 2:	Memory Hierarchy Design (Section 2.1)
8		Midterm exam
9-10	Chapter 3:	Instruction-Level Parallelism and Its Exploitation
		(Sections 3.1-3.12)
11-12	Chapter 5:	Thread-Level Parallelism
		(Sections 5.1-5.6)
13-14	Chapter 4:	Data-Level Parallelism in Vector, SIMD, and GPU
		Architectures (Sections 4.1-4.4)
15		Final exam

COURSE OUTLINE

Grading Policy :	Midterm exam:	35%
	Final exam:	35%
	Course Presentation:	20%
	Quiz:	10%

The NJIT Honor Code will be upheld. Any violations of the code will be brought to the immediate attention of the Dean of Students. NJIT's academic integrity code is available at <u>https://www5.njit.edu/policies/sites/policies/files/academic-integrity-code.pdf</u>.