ECE689 Computer Arithmetic Algorithms NJIT ECE Wednesday 6:00pm-9:05pm

Official Prerequisite: Undergraduate course in logic design **Recommended prerequisite:** Computer Organization/Architecture courses

Official Course Catalog Description:

Data representation, integers, floating point and residue representation. Bounds on arithmetic speed, algorithms for high speed addition, multiplication, and division. Pipelined arithmetic. Hardware implementation and control issues.

Expanded Description:

The purpose of this course is to provide both the theory and practice of state-of-the-art algorithms and designs for arithmetic operations. Computer arithmetic is a subfield of digital computer organization. It deals with the hardware realization of arithmetic functions to support various computer architectures as well as with arithmetic algorithms for firmware/software implementation. A major thrust of digital computer arithmetic is the design of hardware algorithms and circuits to enhance the speed of various numeric operations. Thus much of what is presented in this course complements the architectural and algorithmic speedup techniques covered as part of the advanced computer architecture courses.

Textbook:

Computer Arithmetic Algorithms, 2nd Edition, by Israel Koren, published by A. K. Peters, Natick, MA, 2002 (ISBN 9781568811604)

Instructor: Dr. Chen-Huan Chiang Office: off campus Off campus Tel and Fax: 908-582-1223 Main email : cc444@njit.edu Alternative email : chen-huan.chiang@alcatel-lucent.com

Office Hours: Wednesday 5pm-6pm; and by appointment Location: Room 324 ECEC, or in the classroom Telephone: 973-596-5692

LiveMeeting: In case of snow or any reason that in-class presence is not permitted, we shall use LiveMeeting. LiveMeeting notice and conference call number will be broadcast by email and posted on NJIT Moodle

Any student who has a need for accommodation based on the impact of a disability should contact me privately to discuss the specific situation as soon as possible.

Grading Policy:

No late assignments will be accepted! No cheating and plagiarisms will be tolerated!

0%, for practice only
15%
summary sheet,
, and
owed)
50% (25% each)
<u></u>
35%

Suggested types of final projects:

- Hardware implementation (in Verilog or VHDL) of an arithmetic unit/algorithm;
- Software simulation (in C or Java) of an arithmetic unit/algorithm;
- Research study of a novel or published arithmetic unit/algorithm.

Topics Covered:

Number systems.

Chap 1. Conventional number

Chap 2. Unconventional fixed-radix number systems.

Residue numbers and its arithmetic.

Chap 11. The residue number system

Limits of fast arithmetic.

Fixed-point addition and subtraction.

Chap 5. Algorithms for fast addition.

Floating-point addition and subtraction.

Chap 10. Logarithmic number systems

Chap 4. Floating-point arithmetic

Fast multiplication

Chap 3. Sequential algorithms for multiplication and division.

Chap 6. High-speed multiplication.

Fast division.

Chap 7. Fast division

Chap 8. Division through multiplication.

Elementary functions.

Chap 9. Efficient algorithms for evaluation of elementary functions. Pipelined arithmetic.

Reading Assignments:

- 1. Number Systems Vergos, H.T.; Dimitrakopoulos, G.; , "On Modulo 2^n+1 Adder Design," *Computers, IEEE Transactions on*, vol.61, no.2, pp.173-186, Feb. 2012
- 2. Addition/Subtraction

V. Kantabutra, "A Recursive Carry-Lookahead/Carry-Select Hybrid Adder," *IEEE Trans. Computers*, Vol. 43, No. 12, pp. 1495-1499, December 1993.

3. Multiplication

J. M. Jou, S. R. Kuang, and R. D. Chen, "Design of Low-Error Fixed-Width Multipliers for DSP Applications," *IEEE Trans. Circuits and Systems II*, Vol. 46, pp. 836-842, June 1999.

4. Division

Focus on the section "New Radix-16 Divider" on p.186

J. Coke, H. Baliga, N. Cooray, E. Gamsaragan, P. Smith, K. Yoon, J. Abel and A. Valles, "Improvements in the Intel® CoreTM2 Penryn Processor Family Architecture and Microarchitecture", Intel Technology Journal, Vol. 12, Issue 03, October 2008

- Real Arithmetic

 A. Eisinberg and G. Fedele, "Accurate Floating-Point Summation: A New Approach," *Applied Mathematics and Computation*, Vol. 189, pp. 410-424, 2007.
- Elementary Functions.
 T. Sasao, S. Nagayama, and J. T. Butler, "Numerical Function Generators Using LUT Cascades," *IEEE Trans. Computers*, Vol. 56, No. 6, pp. 826-838, June 2007.
- Pipeline Arithmetic/GPU Computing
 K. Fatahalian, J. Sugerman, and P. Hanrahan. 2004. "Understanding the efficiency of
 GPU algorithms for matrix-matrix multiplication." In Proceedings of the ACM
 SIGGRAPH/EUROGRAPHICS conference on Graphics hardware

Homework Assignments:

- Assignment #1: Chapter 1, Problems 1, 2, 5, 6, 7, 8, 9 and 13.
- Assignment #2: Chapter 2, Problems 1, 2, 5, 7, 10 and 12.
- Assignment #3: Chapter 3, Problems 1, 2, 3, 4, 6, 8 and 10.
- Assignment #4: Chapter 4, Problems 2, 3, 4, 10, 11, 12, 14 and 16.
- Assignment #5: Chapter 5, Problems 2, 3, 4, 6, 9 (should be Fig. 5.8 rather than 5.5), 12, 13, 15, 17, 18 and 20.
- Assignment #6: Chapter 6, Problems 4, 7, 8, 11, 12, 13 and 14 or 15.
- Assignment #7: Chapter 7, Problems 2, 4, 5, 10, 11 and 13.
- Assignment #8: Chapter 8, Problems 3, 8 and 9.
- Assignment #9: Chapter 9, Problems 1, 2 and 6.

Tentative Schedule:

Lecture	Topics
1	Introduction
	Number systems
	HW
[1/28 last day to add/d	rop a class]
2	Number systems
	Residue numbers and its arithmetic
	HW
3	Unconventional number systems
	Limits of fast arithmetic
	Paper#1 write-up due
	HW
4	Unconventional number systems
	Fixed-point addition and subtraction
	HW

	Paper#2 write-up due
5	Quiz #1
	HW
6	Fixed-point addition and subtraction (continued)
	HW
	Paper#3 write-up due
7	Fixed-point addition and subtraction (continued)
	Start your planning for Term Project
8	Floating-point addition and subtraction
	HW
	Paper#4 write-up due
9	Fast division (continued)
	Term Project proposal due and short presentation of each team
	Paper#5 write-up due
10	Quiz #2
	Elementary functions
	HW
11	Elementary functions (continued)
	Paper#6 write-up due
12	Pipelined arithmetic
	HW
	Term Project progress check-point meetings
13	Pipelined arithmetic (continued)
	Paper#7 write-up due
14	Final Exam
15	Term Project Presentation & Report due