ECE 425 – Wireless Communication Systems (3 credits, 3 contact hours, elective course)

Instructor: Russell C. Pepe, E-mail: rpepe@njit.edu, Tel: 201-960-6796

Room

- Central King Building, Room: 207

Office Hours: Monday and Tuesday, 4:00 to 5:15pm, by appointment

Course Description:

This is a course on the fundamental of wireless communication systems and techniques. Topics include wireless systems and standards, the cellular concept, wireless propagation, co-channel interference, digital modulation over fading channels, antenna diversity, spread spectrum techniques, TDMA, GSM and CDMA cellular architectures, handoff, 1G through 5G systems. The course provides a general background for advanced courses on wireless communication systems and networks.

Prerequisites: ECE481 or ECE421.

Specific course learning outcomes (CLOs):

The students will be able to:

1. Understand the history and progression of Wireless Communications from early systems to 1G through 5G.
2. Understand the language and terms of Wireless Communications.
3. Understand the basic building blocks of a Wireless Communications System. This includes, wave propagation, the cellular concept, signal to interference, trunking, modulation and fading.
4. Understand multiple access and duplexing.
5. Understand the structure and standards related to AMPS, USDC, GSM, CDMA and LTE.
Relevant student outcomes (ABET criterion 3):

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics (CLO 1-5)
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors (CLO 1-5)
3. an ability to communicate effectively with a range of audiences (CLO 1-5)
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts (CLO 1-5)
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives (CLO 1-2)
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions (CLO 1, 3, 5)

Lecture:

- Read the Text Book assignments for Lectures one week in advance.
- Hand in Homework assignment questions and problems one week after assigned. These may be hand written, but must be neat and legible. No credit is given for late homework.
- Students will demonstrate Homework solutions in class on the due date. This will count towards Class Participation.

Technical Paper:

- A Technical Paper will be assigned during the second week. The eligible topics will be assigned at that time.
- This Report will be handed in during the 14th week of class.
- A 10-minute Oral Presentation will be given with a Power Point Presentation as your Final Exam.
- The Paper must be 3 to 5 pages, typed, single spaced.
- Pictures, graphs, diagrams, etc. may and should be included, but are additional to the 3 to 5 pages.
- A separate Bibliography is to be provided. You should reference a minimum of 2 Text Books and 5 Technical Articles.

Extra Credit:

- IEEE Seminar
Tests:

- Three Tests will be given during the semester.
- You will be given 90 minutes to complete each Test.
- A brief review will be given the week before Tests.
- Calculators will be permitted.
- All tests are closed book and notes. However, a one-page (8 1/2 x 11”) formula sheet will be allowed.

Grading:

- Homework: 10%
- Class Participation: 10%
- Tests (3): 45%
- Technical Paper Milestones: 10%
- Technical Paper/Final: 15%
- Seminar: 10%

Attendance:

- Attendance will be taken before each class.
- You will find that poor attendance will negatively impact your ability to grasp the material presented in this course.

Rules:

- Arrive to class on time. If you plan to be late or miss a class, call me or send me an e-mail in advance.
- Turn off your cell phone prior to arrive to class. Use of cell phones in class is forbidden.
Agenda:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture:</td>
<td></td>
</tr>
</tbody>
</table>
| 1 | Introduction
 | Chapter 1 (Introduction to Wireless Communication Systems) |
| 2 | Chapter 2 (Modern Wireless Communication Systems)
 | **Assign Technical Paper** |
| 3 | Chapter 3 (The Cellular Concept)
 | **Technical Paper Title due** |
| 4 | Chapter 3 (The Cellular Concept)
 | **Test 1** |
| 5 | Chapter 4 (Large-Scale Path Loss) |
| 6 | Chapter 5 (Small-Scale Path Loss) |
| 7 | Chapter 6 (Modulation Techniques)
 | **Technical Paper Abstract due** |
| 8 | Chapter 6 (Modulation Techniques)
 | **Test 2** |
| 9 | Chapter 7.10 to 7.12 (Diversity)
 | **Technical Paper Outline due** |
| 10 | Chapter 8 (Speech Coding)
 | Chapter 9 (Multiple Access Techniques)
 | **Technical Paper due**
 | **Test 3** |
| 11 | Chapter 9 (Multiple Access Techniques)
 | Chapter 11 (Wireless Systems and Standards)
 | LTE and 5G (Notes)
 | **Technical Paper due**
 | **Test 3** |
| 15 | Final-Techinical Paper Presentation |
| 16 | Final-Techinical Paper Presentation |