Department of Electrical and Computer Engineering ECE 321: Random Signals and Noise

ECE 321: Random Signals and Noise (3-0-3)

Instructor: Dr. Hongya Ge

Textbook: Peyton Z. Peebles Jr., *Probability, Random Variables and Random Signal Principles*, McGraw Hill, 4th Ed., 2001 (reference).

Catalog Course Description: Random processes occurring in electrical engineering. An introduction to probability and random variables is followed by stochastic processes and noise. Topics include auto- and cross-correlation functions, power spectral density, response of linear systems to random signals, and noise figure calculations.

Course Description:

The course introduces basic concepts, and provides the basic definitions and mathematical tools that enable elementary analysis of random phenomena.

Key topics include:

- Introduction to probability theory
- Random Variables, distributions and density functions
- Operations on random variables (single, pairs, multiple)
- Random sums and sequences
- Random processes
- Linear Systems with random inputs

Prerequisite: ECE232 (Circuits and Systems II) **Corequisite: ECE333** (Systems and Signals)

Specific Course Learning Outcomes (CLOs):

The students will be able

- 1. to define, classify, manipulate, and calculate the basic characteristics of random variables and random processes
- 2. to analyze the characteristics and implications of data consisting of random sums and sequences
- 3. to develop simulations with the requisite statistical analysis
- 4. to relate behaviors of models of engineering systems to basic concepts and characteristics of random variable and random process models of data and outputs

Relevant Student Outcomes (ABET criterion 3):

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics (CLO 1-4)

2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors (CLO 1-4)

6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions (CLO 1-4)

7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies (CLO 1-4)

Computer assisted design and course specific software: MATLAB

Topics:

We	ek Topics	Chapter	Pages
1	Set, Sample Space, Joint and Conditional Probability	1	1-23
2	Bernoulli Trials, Random Variables, Density Functions, and	1-2	28-31
	Gaussian Random Variables		41-54
3	Binomial, Exponential, Rayleigh Distributions and Conditional	2	54-63
	Distributions		
4	Expectation, Central Moment, Variance, and Characteristic	3	77-87
	Functions		
5	Transformation of a Random Variable, Vector Random	3-4	87-92
	Variable, Joint Distribution Function		107-112
6	Marginal Distribution and Density Functions- Exam #1	4	112-116
7	Statistical Independence Distribution. Expectation of a	4-5	121-125
	Function of Random Variables		141-146
8	Jointly Gaussian Random Variables. Random Processes	5-6	148-151
			179-188
9	Stationary Random Processes, Correlation Functions, Gaussian	6	188-206
	Random Process		
10	Power Density Spectrum- Exam #2	7	220-225
11	Bandwidth of Power Density Spectrum. Auto-Correlation	7	225-234
	Function		
12	White Noise, Linear Systems	7-8	246-251
			270-275
13	Random Signal Response of Linear Systems	8	276-286
14	Review		
15	Final Examination		

Grading: Class participation, Homework, quizzes 10%; Mid-term examinations 2 x 30%; Final Examination 30%.

Discussing homework problem solutions in a group is beneficial, but the solution should be written independently, as it prepares you better for the examinations. Only one late homework assignment will be accepted during the semester. Homework assignments will be provided in class, through email or Moodle.

Honor Code: The NJIT Honor Code will be upheld, and any violations will be brought to the immediate attention of the Dean of Students.

Office: ECEC 311 Office hours: T 1:00 PM -2:00 PM W 11:30 AM - 12:30 PM R 12:00 PM - 2:00 PM Other times can be arranged through appointments Prepared by: M. Feknous/Kam